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TECHNICAL NOTE 3749

TORSIONAL, STIFFNESS OF THIN-WALLED SHELLS HAVING
REINFORCING CORES AND RECTANGULAR, TRIANGULAR,
OR DIAMOND CROSS SECTION

By Harvey G. McComb, Jr.
SUMMARY

A theoretical investigation has been made of-the Saint-Venant torsion
of certain composite bars. These bars are composed of two materials -
one material in the form of a thin-walled cylindrical shell and the other
material in the form of a core which fills the interior of the shell and
1s bonded to it.

An approximate boundary-velue problem is formulated on assumptions
similer to those of the theory of torsion of hollow thin-walled shells
(Bredt theory). This boundary-value problem is solved exactly for a
rectangular cross section and approximately for slender trianguler and
slender diamond cross sections. Results for the torsional stiffness
constants are presented graphically.

INTRODUCTION

Certain airframe components such as wings, stabilizing fins, control
surfaces, and helicopter rotor blades have been fabricated by employing
a high-strength shell bonded to a core made of some light-weight meterigl.
The shell is formed in the external contour of the component and the core
£111s the interior and acts to stabllize the shell against local buckling.
Such a structure has been called a "foem-filled shell" because the core
is often a foamed-plastic material. Metal honeycomb and balsa wood have
also been used for cores.

A large amount of literature exists on the problem of torsion of
homogeneous isotropic cylindrical bars, but relatively little work has
been done on the torsion of composite cylinders. A few exact solutions
to problems in the torsion of composite sections are presented in refer-
ences 1 end 2. Solutions for other cross-sectional configurations are
desirable, and the methods used in references 1 and 2 do not.appear to
_be applicable for sections of the type considered in the present report. -
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In this report an approximste boundary-velue problem for the tor-
sion of foam-filled shells is formulated. The fact that the thickness
of the outer shell is small relative to overall dimensions of the cross
section allows an approximation similar to that of the Bredt theory for
the torsion of hollow thin-welled shells with free warping. (See ref. 3,
pp. 298-302.) For a rectangular cross section, an exact solution to the
approximate boundary-value problem is obtained. For slender triangular
and slender dismond cross sections, approximate solutions which appear
to be reasonably accurate are obtained. Finally, the results are com-
pared with results based on an elementary concept of the torsional stiff-
ness of fosm-filled shells.

SYMBOLS

A,B arbitrary constants
a,b,c cross-sectional dimensions (see fig. L)
C contour defining boundary of a region
£(t),e(t) arbitrary functions
Gy,Go shear moduli of shell and core materials, respectively
hn(x) Fourier coefficient (see eq. (21))
d1,d2 torsional stiffness constants

Gt Gyt
kynskon arbitrary constants
M moment on cross section
m | index in equations (37) and (61)
n summation index
R " region
8 ] direction tangential to a contour in cross section

t thickness of shell wall.
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t0 dimension of cross section (see fig. U4)

U total complementary|energy per unit length

U= GuU

X,¥,% coordinetes along X-, Y-, and Z-axes, respectively

an, B arbitrary constants |

7 shear strain

€ = bfa

e gngle of twist per unit length

P eigenvalues

p=\1+ e

v direction normal to & contour in cross section

E,n nondimensionsl coordinates in x- and y-directioms, - °
respectively

T shear stress

¢ stress function

Q constant of integration

Subscripts:

1,2 refer to regions and contours indicated in figure 1

Prime denotes differentiation with respect to the indicated
variable.

BASIC EQUATIONS

In this section equaetions of elasticlity are established for the
Saint-Venant torsion of certain cylindrical bars composed of two materials.
These equations are then particularized to the case of foam-filled thin-
walled shells. Finally, the energy approach to the torsion of foam-filled
shells is discussed briefly.
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Torsion of Cylindricel Bars Consisting of Two Materials

Consider a long cylindrical bar composed of two isotropic materials
in vhich one material surrounds the other. A cross section of such a bar
is shown in figure 1. For torsion with free warping, the stresses are
given in terms of a stress function ¢ as follows:

Txz = -a_yi '
r (1)
9y
Tyz = S;—
J

vhere 1 =1 or 2. Each function @; must satisfy Poisson's equation

Veg; = -2010 (2)

in its corresponding region Rj.

The boundary conditions can be expressed in terms of the stress
function by consideration of the components of shear stress normel and
tangentiel to a contour. These components are, respectively,

P,
Tyz =—a—g
( (3)
of -
Tez = 5=
ov
J

The condition that the external boundary of the section must be free of
stress is obtained by integrating the first of equations (3) along Cq:

¢$1| = Q1 = Constent (%)
C1
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The conditions which must be satisfied at the interface Co can be seen

by referring to figure 2. The tangential strain must be continuous across
Co. In terms of the stress function, this condition is

1% 1%
Gl dv Go Oy
2 Co

(5)

Lastly, the shearing-stress component normel to Cpo must be continuous
across Cpo, or

ﬂ% a¢1 (6)
o8 Bs
Ca Co
When equation (6) is integrated, the following equation results:
¢2| =f| +a2 (7)
Co Co

The problem is to £ind stress functlons ¢l and ¢2 which satisfy

equation (2) in their respective domains and the boundary conditions
(egs. (%), (5), and (7)).

The total moment on the cross section is given by

M= Z X (ryax - 'rxzy) ary (8)

This equation can be written in terms of ¢ as follows:

ﬂ_x%- a¢i)dxdy (9)
oy
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Integrating by parts and meking use of equations (L) and (7) gives

M=iQiL/;i(-xdy+ydx)+§lg2¢idRi (10)

1=1

The stresses and moment on the cross section are independent of Q4;

therefore, these constents may be chosen arbitrarily. For convenience,
Q1 and Qo are both taken to be zero so that the expression for the

moment is analogous to that for the torsion of a uniform cross section;
that is, moment equals twice the volume under the ¢ diagram.

Torsion of Foam-Filled Shells

The equations of elasticity are particularized for the case of a
cylinder made of a thin-walled shell of one material filled with a core
of enother, that is, a foam-filled shell. In figure 3 a general cross
section for such a cylinder is illustrated. Because the thickness of
the shell wall 1s small compared with the overall dimensions of the cross
section, the stress in the wall can be assumed to be uniformly distributed
over the thickness. This stress is equal to the normal derivative and is ,

gliven by

M ¢ (11)

where Tygp1] Tepresents the stress in the shell wall. With the use of
equaetion (11), equations (4), (5), and (7) cen now be written as

| =0 (12)
Cy
and
E¢_2 =-f’3¢.’- =_9.2_?E (13) i
ov G & G t
Co ‘ Co Cs “
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Let the contour C in figure 3 be the middle surface of the shell
wall. If the shell wall is assumed to be concentrated at its middle sur-
face, then C can be thought of as representing the interface, middle
surface, and outer boundary of the wall. Conmsider R as being the region
bounded by C. The problem can now be formulated as follows. Find a
function ¢ satisfying the equation

Vog = -2G00 - (14)
in R and the equation

| _.%2¢

v I (15)

c c

along C. The moment on the cross section is equal to twice the volume
under the ¢ diagrem, or

M=2[¢ ax ay (16)
47 .

Energy Approach

Approximate solutions for the torsion of foam-filled shells can be
obtained by the energy method. The complementary energy for such a body
is the sum of the stress energy of the core, the stress energy of the
shell weall, and the negative of the work done by the externasl moment
acting through the angle of twist. For the composite cross section
shown in figure 3 the complementary energy per unit length is

U= Eé;ﬂ('rxzz + Tyzz) dax dy + 'é_la_:[L/; (Twm)at ds - Mo (x7)
R

e e et m e e - e —— e - —
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vhere Ty, &and Ty, represent the shear stresses in the core and. Tyg1j

represents the shear stress in the shell wall. In terms of the stress
function @, U becomes

u=.2_1(}ZR (¢x2+¢y2-’-l-G29¢)dxdy+§-]éIj;¢2lc% (18)

where the subscripts on ¢ denote the partial derivative with respect
to the indicated variable.

When the variation of U is equated to zero and integrations by
parts are carried out, the following equation is obtalned:

GodU = 0 = j;g%+§l%% a¢as-_£f(¢n+¢w+2ege)a¢axdy (19)
c

It is seen that, if 5f is arbitrary in R and along C, equations (14)
end (15) must be valid.

The torsion of a foam-filled shell is amalogous to the problem of
the deflection of a membrane stretched over the region R, subjected to
lateral pressure, and supported along the contour C by infinitely many
springs which are constrained to distort only in the direction normal to
the plane of R. Some discussion of approximate solutions of problems
of this type is given in reference L.

SOLUTION OF SPECIFIC FROBLEMS

In this part of the report an exact solution for a rectengular cross
section is obtained by satisfying equations (14t) and (15). For the slender
triangular and slender dismond cross sections, exact solutions do not
appear feasible, and epproximate solutions are obtained instead by using
equation (18). Two approximate procedures are utilized in each case;
the first is the Reyleigh-Ritz method and the second is a more general
variational procedure, herein celled the "variational method." This
latter procedure is applied, for the most part, in cases where the
Rayleigh-Ritz method becomes cumbersome. These two approximate methods
may be applicable to other sections of practical interest for which solu-
tions are not available.
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Rectangular Cross Section .

The notation for a rectangular cross section is shown in figure 4(a).
The thickness of the shell weall is assumed to be constant. The problem
is to £find a function ¢ vwhich satisfies equation (14) within the rec-
tangle and the following boundary conditions:

ng.;z—i% (st x=ta) (208)
%=;%% (st y=+b)  (20b)

The function ¢ is, of course, symmetric sbout both the X- and
Y-axes. The symmetry condition about the X-axis is satisfied when ¢
is taken in the form

¢ = io hn(x) cos Any (21)

where the functions cos A,y form an orthogonal set. The right-hand

side of equation (14) can be expended in a Fourier series of the func-
tions cos Ayy in the interval -b £ y £ b, and this expension yields

V2¢=-i 4GB sin Apb

cos N (22)
n=0 Mb + s8in Apnb cos Apb d

Substituting the assumed solution (eq. (21)) into equation (22) and
equeting coefficients of like terms gives the following ordinary dif-
ferential equation for hy(x):

4Go6 sin Ab
Mb + sin Apb cos Agb

hn(x)" - Ap2hn(x) = - . (23)
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The solution to equation (23) is

48,0 sin Ayb
hn(x) = kq, sinh Anx + ko, cosh Apx +

MZ(Anb + s1n Mob cos Anb)
(24)
The constents k;, vaenish because of symmetry. The constants ko, and

the eigenvalues A, can be found from the boundary conditions at x = a

end y = b, respectively. Consider first the condition at y = b. The
substitution of equation (21) into equation (20b) yields

G
Ao sin Agb = % cos Anb (25)

Therefore, the eigenvalues are given by

ten Agb = —— (26)

.Mb

where

At x = a, the substitution of equation (21) into equation (20a) yields

ks, M, sinh )\na=--G—2—k2n cosh Apa + #3g0 s1n Mb
Gyt M2(Anb + sin Apb cos Apb)

i (27)
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Therefore,

~4KG,6b281n Agb
kop =

)\n2b2(7\nb sinh Apa + K cosh Apa) (Anb + sin Apb cos Apb)

(28)

Consequently, the stress function is

4 - i lI(}aebaxs:l.n Ab cos Ay (L )

7=0 An2b2(Anb + sin Agb cos Apb) Apb sinh Aza + K cosh Ay

K cosh Apx )

(29)

The moment on the cross section is given by the formula

M=8Laﬂb¢uw (30)

The torsional stiffness can be expressed in terms of elther G; or Go

o=z

= Gy = Gad2 (31)

The torsional stiffness constants J; and Jp are obtained upon sub-

stituting equation (29) into equation (30) and carrying out the indicated
integration.

When the results are expressed in the form of equation (31),
it is seen that

)

J1 = )-l-ctoabKA

\ (32)
. Jo = 2ct03A
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) 8in®Anb K sinh
A Z ‘An] - b 8 Ana _!
=0 Apob (Apb + sin Apb cos Apb) & Anb(Anb sinh Apa + K cosh )\na)J

(33)

The series A converges very rapldly. For various values of K, the
elgenvalues are easily located from the intersections of the hyper-

bola K/Anb eand the curves +tan Apb as indicated in figure 5. Plots

of J1 and Jo egainst the cross-section aspect ratio to/c for wvarious

values of K are presented in figure 6.

As the stiffness of the shell-wall meterial vanishes ’ K approaches

infinity end Agb spproaches S-a%ﬁ’i. Tt can be shown that the

limiting value of Jo 1s the solution obtained by the theory of elastic-

ity for the torsion of a homogeneous rectanguler cross section as glven
in reference 3 (p. 278).

As the stiffness of the core material vanishes, K approaches zero
and the solution should approach that of the Bredt theory for the torsion
of hollow thin-walled shells with free warping. As K approaches zero,
Mp approaches mnxt. It is obvious, then, that all the terms in A +vanish

for which n > 0. Investigation of the term for which n = O shows
that J7 does approach the result given by the Bredt theory which is

2etg>t
Km0 jﬂ‘ ds (1 . ___)

where Aqp 1s the area enclosed by the median line of the shell wall.

(54)

Slender Triangular Cross Section

If the energy approach is used, two approximate solutions are
obtained for a cross section in the shape of & slender isosceles triangle
with a constant-thickness shell wall as illustrated in figure 4(b). One
solution is obtained: by the Rayleigh-Ritz method and another solution is
found. by utilizing the caleculus of veriations and the boundery-layer
technique of reference 5.

®
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Rayleigh-Ritz method.- In terms of nondimensional coordinates, the
complementary energy (eq. (18)), can be written for the trisngle as follows:

U= GoU

= /;l_/;g (€2¢§2 + ¢‘q2 - lPGzeb2¢)-i_t- an ag + %j;lggal

1
d.§+Kf ¢2| dn
0o le=

T=£
(35)

vhere

p.=‘,l+<-:2

Note that the equation of the sloping side of the triangle in nondimen-
sional coordinates is simply 7 = §.

yve
I
oI
-

]
o
m
It
plo

The stress function ¢ must be an even function through the thick-
ness, and for slender sectlons it is usually sufficient to assume a par-
gbolic variation in the thickness direction. For thick sections, how-
ever, it mey be necessary to include additional terms in the thickness
direction to get satisfactory a.ccuracy Suppose now that ¢ is assumed

to be a polynomial
¢ = fi ant™ + B2 (36)
n=0

When equation (36) is- substituted into equation (35) and U is minimized
with respect to the parameters op and B, the following r + 2 equa~
tions result:
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3G ]
—= 0
dap
X
— 2 _mn Ku Ke 2
gan(e m+ n m+n+l+K€)+B(m+5+-3-)_ +2G29b2
> (37)
i1
=0
oB
r
= Ku [ Ke Ku Ke 1\ _ 1,02
%%(n+3+3>+ﬂ(5+5+3> g 2%
: J

where O LmZKr.

Solution of the system of simulteneous equations (37) ylelds an

eand B. From equation (16), the moment is

r
_ oy B
M_®G§h+2+

The stiffness can be written in the form of equation (31) and J1
and Jo are easily calculated. The results are

2
cttg” r
0 1 9n
J1 = KEZ 2+ EZ
12 n=0 & + 2 gogb®  (@u6b
r
J2=-—0-—6 1 n + B
12 \ n=0 B+ 2Gy0b2 2G0b2

(38)

 (29)
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When K i1s large compared with unity a large number of equations may
be required for reasonasble accuracy. An approach which avoids this
difficulty is developed in the succeeding section. -

Variational method.- Instead of assuming for ¢ the polynomial of
equation (36), suppose arbitrary functions of ¢ are allowed to remain
and ¢ is teken to be of the form

¢ = £(t) + 1a(E) (ko)

When equation (40) is substituted into equation (35) and the variation
of U with respect to admissible variations in £ and g is equated
to zero, two simultaneous ordinary dlfferential equations for the fume-
tions £ and g are obtalned as follows:

e2(e£') " + 555(553')' - Ku(£ + £2g) = -2G,0b°¢
} (k1)

—(§3f )+ —-(§5g )' - Ku(e2e + ghg) - % 7 = - 2 coonPt3

/

and the following boundary conditlions are obtained:

_(gf' + 53-3- g') =0 (422)
£—0

(ng' + % §5g') =0 (L42b)
£&—0

(ef Yy Kf)g-l 0 (42¢)
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'(eg' + Kg)§=l =0 (k24)

vhere the primes denote derivatlves wlth respect to E.

The differential equations (41) are linear with variasble coeffi-
clents, and it appears to be a difficult task to £ind an exact solution
to the system. For the case of slender cross sectlions, however, an epprox-
imate solution is possible by utilizing the "boundary layer" technique
discussed in reference 5. Notice that the differentiated terms in equa~
tions (¥1) are multiplied by &2, a quantity which for slender cross
sections is small compared with unity. Dlfferential -equations having the
most highly differentiated terms multiplied by a small quantity are char-
acteristic of the type of boundery-lasyer problems considered in
reference 5. .

Suppose, initially, that £ and g are slowly varying functions
throughout the region 0 £ ¢ £ 1. The term "slowly varying” is intended
to mean that the maximum velues of the functions £ and g and their
derivatives which appear in equations (41) are of the same order of maegni-
tude. Then, as long as X 1is at leest of the order of unity, the terms
in equations (41) which contain €2 have 1little influence on the solu-
tion. Consequently, a good approximaetion to & particular solution is
obtained by ignoring the terms in equations (41) which contain e2.

When this procedure is carried out, it is found that the approximsate
particular solubtion satisfies the boundary conditions at € = O but does
not satisfy the boundary conditions at € = 1. It can be concluded that
the required solution is such thet the functions £ and g are not
slowly varying everywhere in the region O £ &€ £ 1. Somewhere the deriv-

atives which appear in equations (41) must teke on velues which are of
the order of e-2 so that the terms conteining €2 cen have an appre-
cleble influence on the solution.

It is assumed that the region where the derivatives of £ and g
have values of the order of e-2 is confined to a so-called boundary
layer in the neighborhood of & = 1. On the basis of this assumption,
the particular solution alone is a good approximation to the exact solu-
tion away from & = 1. Then, by focusing attention on the boundary layer
close to & = 1, it is possible to obtain an approximate homogeneous
solution to equations (¥1) which modifies the particular solution in
such a manner that the boundsry conditions at £ = 1 can be satisfied.

It is convenlent to get a particular solution as a power series
in e instead of ignoring completely the €2 terms in equations (41).
Assume that a solution can be expressed in the form
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£p(t) = £po(E) + efpi(t) + 2fpo(E) + - . .

r (43)
gp(E) = gpo(t) + egpy (&) + 2gpo(E) + - . .

where the subscript P denotes a particular solution. When equetions (45)
are substituted into equations (41) and coefficients of like powers of e
are equated, pairs of simulbtaneous equations are obtained for the coef-

ficients in the power series. For example, when the coefficients of the
zeroeth power of € are equated there results

;
Ku(fPo + §28Po) = 2Gp0b2¢

L (he)
Ku(§2fpo + g‘*gpo) + -‘;-égm = % Gpeb2t3

When coefficients of the first power of € are equated the result is
I
£p1 + E%p) = O
> (o)
KP-(EEfPl + E»h'gpl) + % ¢3gpy = O

J

When coefficients of the second power of € aré equated the following
equations result:

3
(Efpo')' + %(5331:0')' - Kl-l(fpz + §2gP2) =0

5 (khe)

%(fjfpo')' +3(%ep" ) - Ku(t2ep, + happ ) - 2 Pep = 0
J

Similar equations are obtained when coefficients of higher powers of e
are equated.

———
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Solution of equations (l4h4) results in the following expressions
for fp and 8p!t

W
fP=G29b2§—i+§2+e2(;2§u—2-+,%—i+ §2)+. ..

> (45)
gp = -Go8b2(L + 2 + . . .)

/

Coefficients of the odd powers of € vanish. This particular solution
satisfies the boundery conditions at £ = O but not at E = 1.

A homogeneous solution can be obtalned which modifies the particular
solution in the vicinity of € = 1 in such a way that the boundary con-
ditions at € = 1 can be satisfied. In order to determine the homo-
geneous solution it is convenient to put equations (41) into a form in
which, in the neighborhood of & = 1, the terms containing derivatives
are of the same order of megnitude as the remaining terms. Such a con-
version is provided by the coordinste transformation

E =1+ €k (46)

When the transformation (eq. (46)) is introduced into equations (41) and
the right-hand sides are set equal to zero, the following equations are
obtained:

l:(l + eE)f']' + %—-El + e§)3g':l’ - Kp[f + (1 + eE)ag:l = 0

%‘-El + e'g')5f'] ' + %l:(l + eE)sg'] " Kp[(l + eE)ef + (1 + eE),*g] - 2 (¥7)

%(l +ef)’g=0

where the primes now denote differentiation with respect to E.
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The homogeneous solution can be expanded in powers of e

3\

£a(E) = fpo(E) + efm(E) + ®epo(E) + . . .

> (48)
gglt)

em(E) + egm(t) + Zgpo(E) + - - .«

/

where the subscript H denotes a homogeneous solution. If these expres-
sions are substituted into equations (47) and the coefficients of like
powers of € are equated, systems of ordinary differential equations

are obtained. For the terms fpo &and ggp, a set of homogeneous equa-
tions is obtained:

fHo' + }3'- gm" - Kp.(fHo + gHo) =0

e (49)
lf n+-]__g L £ g _B._g =0
5 ‘B0 T & K“(HO HO) 5 EHO

For the terms fp; eand gy the following nonhomogeneous equations are
obtained:

fm + %‘351" - KP(?Hl +'331) = -(Efﬂo')' -'(Egﬂo')' + 2Kpkgpp

% " + %-gﬂl" - Kp(fﬂl + gEl) - %’gﬂl = -(Efﬂo')' - (Egﬂo')' + } (50)

ZKNE(fﬂo + 2830) + hE&mﬂ

Additional sets of nonhomogeneous equetions would result for the coef-
ficients of higher order terms.
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It is found that neglecting terms of the order of € in equa-
tions (48) is equivalent to neglecting terms only of the order of e2
in the final result for the torsionel stiffness constants. Therefore,

a final result which includes all terms linear in ¢ can be obtained by
solving only equations (49) and dropping all higher order terms in the
homogeneous solution. Solutions to equations (49) are of the form

A
fo = M

B = B

Substitution of these functions into equations (49) ylelds

-

> (51)

This system of equations has a solution only if the determinant of +the
coefficients vanishes. When the determinant is set equal to zero a
biquadratic equation for A is obtained. The solution to the biquaedratic
equation is

2
N l5+6K|1t\l(lZ+6Kp.) - 60Kp (52)

The homogeneous solution must venish as the absolute magnitude of E
increases, and since £ 1Is always negative or zero, only the two positiwve
roots for A are required.

From the first of equations (51) the B coefficients can be written
in terms of the A coefficients

2
B=-3M -Ku , © (53)
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When the E coordinste is transformed to the ¢ coordinate and terms of

the order of €2 are dropped, an approximate general solution to equa-
tions (41) is obtained

2 Moy
£=2 BAge €et +Ggeb?(§5+g2)
n=1
> (54)
2 2 _ AN
g=-> 3B g Teet - g
o=l NS - FKp )

This solution satisfies the boundary conditions at £ = O. The boundary
conditions at £ = 1 are used to determine Al and Ap.

When equations (54) are used, the stress function ¢ becomes

2 2 M M
¢=G29b2ZKn1_37‘L_'_£“_n23 ee?-g
n=1

+ 2462 - 42| (59)
M - Ky Ky

where

and where terms of the order of 2 are dropped. The moment is cal-
culated by substituting ¢ into equation (16) and performing the integra-
tion. The results for the torsional stiffness constants J7 and Jo

are

e = A h e e i o e ——————_ — i = 2 -
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o
> (56)
.
J
where
I‘-1+%+6§: ;nh;mm (57)

and where terms of the order of €2 have been dropped. It is seen now
that in calculating the arbitrary constants Ap, terms of the order of e

msy be neglected. When equations (54) are substituted into the boundery
conditions (egs. (42c) and (42d)) the following expressions for A, are

obtained after dropping terms of the order of e:

(?_ + K)?\ga - X

- B
Ay =
(M + K)\/(15 + 6Ku)® - 60Ky
> (58)
- (§+@7\12-2K

(22 + K)\ﬁb + 6Ku)? -

In the limiting case where K approaches zero the boundary-layer
technique becomes invelid. Therefore, the solution cennot be expected
to approach the proper result for a hollow thin-walled shell. When K |
approaches infinity, an approximate solution for a solid cross section is
obtained; end ' is given by

1lim r=1-h@e (59)
K—w
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Slender Diamond Cross Section

Rayleigh-Ritz method.- For the slender diamond cross section the
notation is shown in figure 4(c). The complementary energy becomes

ae  (60)

5. 2\/;1/;56_:%&2_'_%2 - %gb@%cﬁ] dag +2% j;1¢2

Substitution of the polynomial (eq. (36)) into equation (60) and minimiza-
tion with respect to oy and B yields the. r + 2 equations

m=£

\

Q/

day, =0 m+n m+n+l m+3 m+ 2

1=0=i%(€2 m_ . Ky )"‘B Ky 2 G29b2

> (61)

3T _ K K1) - L ger? .
5 0 n%“ﬂn+3+5(5+3) 2 G20

vhere 0 Smgr.

The moment end the torsional stiffness constants Jy and Jp are

found by utilizing equation (16). The expressions for the torsional
stiffness constants turn out to be precisely the same as for the tri-
angular cross section given in equations (39). Of course, for the diamond
cross section, an and B are obtained from equations (61).

Variational method.- Through the use of the caleculus of variations
and expression (%0) for @, the differential equations (41) are found
to be valid also for the diamond cross section. The boundary equations
et £ =0 (egs. (42a) and (42b)) also hold for the diamond cross section.
The boundary conditions at €& = 1, however, are now given by

)

f'l =0
=1
y (62)

g'l =0
E=1 J

where the primes denote differentiation with respect to E&.

e s m e e et — o —— ——
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The boundary-layer technique yields a general solution of the same
form as that obtained for the triangle. However, now it is found that
neglecting terms of the order of € in the homogeneous solution
(egs. (48)) is equivalent to neglecting terms only of the order of €2
in the final expressions for the torsional stiffness constants. Conse-~
quently, for the diamond cross section a result which includes all terms
of the order of &2 can be obtained by solving equations (49) and dropping
all higher order terms in the homogeneous solution. It is consistent, now,
to keep the €2 term in the particulsr solution.

The approximate general solution to equations (41) for the diamond
cross section becomes

2 Mol o|2e 2 L
- €_€ &s 2 IR 2
f—nglAne e€” + Goob Ku-l-E +62(KZ“2+KP+§
r (63)
2 2 M M
g=-> 3m — K Ané.?e?'g-Ggeba(l+ez)
n=1 7\n2-3Kp,

/

The arbitrary constan‘l;,s A1 end A, are determined by substituting
equations (63) into equations (62).

The stress function becomes

2 2 M M
= b2 —l-3un2e-?e?§+
§ = G0 %A“ M2 - 3Ky

2t
Ky

+§2-n2+62(;(-22:-2-+§-ﬁ-+§2—n2> (64)

If this expression for ¢ is substituted into equation (16) and inte-
grated, the moment can be calculasted. The torsional stiffness constants

become
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)
2
J1 = %o 2KT*
12
f (65)
3
Jdo = c%o I*
12
)
where

L 6 .8 2 _ -
M =14t 4 ¢2 2 +1)+6 S (=K 66
+KH+G(K2u2+Ku+>+ leAn)\n()\nz_m) (66)

When equations (63) are substituted into the boundary conditions
(eas. (62)) and terms of the order of 2 are neglected, the following
expressions are obtained for the arbitrary constants:

N

2
A P 2o + Kp

Al 5
K m/<15+6xp) - 60Ky

Bip = e L+ EKu 27 + Ky
Ky 7\2\/(15 + 6kp)2 - 60Ry

{ (67)

/

In the case where X approaches infinity an approximate solution
for a solid section is obtained, end I'* is given by

lim I'* = 1 - 3¢2 (68)
K—>x
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RESULTS AND DISCUSSION

Presentation of Results

The results of the calculations outlined in this repért are presented
in figures 6, T, and 8. These figures show plots of the torsional stiffness
constants against cross-section aspect ratio for various values of the
parameter K. The torsional stiffness can be expressed either in terms
of the shear modulus of the core material or the shear modulus of the
shell-wall material. The torsional stiffness constant associated with
the shear modulus of the core material Jo is plotted in parts () of

Pigures 6, 7, and 8, whereas the constent assoclated with the shear
modulus of the shell-wall material Jj7 is plotted in parts (b) of these

figures.

In figure 6 are shown the results of the exact solution of the dif-
ferential equation (14) with the bowndary conditions (20) for a rectangular
cross section. In figures T and 8 are shown the results of the approximate
solutions (the Rayleigh~Ritz method and the variational method in conjunc-
tion with the boundery-layer technique) for the trisnguler and diamond
cross sections. A five parameter polynomial wes .used in the Rayleigh-
Ritz method.

Accuracy of Approximate-Methods

Solutions by the Rayleigh-Ritz and variational methods also were
obtained for the rectangular cross section. A comparison of these results
with the exact solution provides an indication of the accuracy of the
gpproximate methods.

A polynomial with only three parameters was used for the Raylelgh-
Ritz method in this comperison. The results showed that for all aspect
ratios and for X 1less than sbout unity the stiffness given by Rayleigh-
Ritz method is less than 3 percent lower than the exact stiffness. It
is believed that the five-parameter Rayleigh-Ritz method used for the
triangular and diamond cross sections should yleld slightly more accurate
results. Of course the accuracy of the Rayleigh-Ritz method can be
improved for large values of X by including more terms in the polynomial
for (). However, the number of simultaneous equations which must be solved
increases with the number of unknown perameters.

The stiffness calculated by the veriational method for the rectangular
cross section was less than 1 percent in error for velues of K greater
then sbout unity and the aspect ratio tg[c less then about 1/4. The
boundary-layer technigue ylelded a slightly more accuraste solution to the
differential equations obtained for the rectangulexr cross section than for
equations (41) which arise for the trianguler and diemond cross sections.
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Thus the results of the variational method for the triangular and diamond
cross sections are probably not quite as accurate as for the rectangular

cross section. It appears that for slender cross sections (smell values

of tg I c¢) the variational method is more accurate for large values of X

and the Rayleigh-Ritz method is more accurate for small values of K.

In figures 7 and 8 the solid curves are results of the five-parsmeter
Rayleigh=~Ritz method, and the dashed curves show results of the variational
method. The Reyleigh-Ritz method certainly leads to a lower bound for the
torsional stiffness. The variational approach also leads to a lower bound
provided the boundary-layer technique yields a sufficiently accurate solu-
tion to equations (¥#1). From the results on the rectangular cross section
it appears reasonable to assume that for K 2 1 +the variationsl method
probebly gives a lower- bound. Therefore, for any particular case where
K 2 1, the higher of the two values of torsional stiffness celculated by
the two approximate methods is the more accurate.

Remarks on an Elementary Caleulation

It is conceivable thet a first approximation to the stiffness of a
foam-filled shell could be made simply by adding the torsional stiffness
of the core alone to that of the shell alone and neglecting the stiffening
effect which results from bonding the core and shell together. Calcula-
tions were made by this elementary procedure and the results are shown

J1,elem

J1,th

the elementary procedure (neglecting the bonding effect) to J1 as cal-
culeted by the theory of this paper. It is seen that for the rectangular
cross section the result of the elementary calculation is never more than
5 percent lower than the exact solution. For the triangulsr and diemond
cross sections, however, the elementary procedure does not lead to such
good. results, and the discrepancy can be as much as 25 percent.

in figure 9. The ratio is the ratio of J; as calculated by

CONCLUDING REMARKS

An approximate boundary-velue problem is set up for the Saint-Venant
torsion of cylindrical thin-walled shells bonded to a core which f£ills
the interior of the shell and which is made of a material different from
that of the shell wall. Solutions for the torsional stiffness are obtained
for three particular cross-sectionsl shapes - an exact solution to the
boundary-value problem for rectangular cross sections and approximate
solutions for slender triangular and slender diamond cross sections.
The approximate solutions are obtained by the use of two energy procedures.
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These methods mey be gpplicable to other cross sections of practical
interest. The choice of epproximate method for any particular problem
depends on the range of paremeters involved.

The stiffness obtained by the simple procedure of adding together
the individual stiffnesses of the core and the hollow shell (neglecting
the effect of the bond) yields results less than five percent low for
rectanguler cross sections. For slender triangular and diamond cross
sections this elementary epproximetion 1s generally not so good and in
certain cases it ylelds resulis which are considerably low.

Langley Aeronautical Iaboretory,
National Advisory Committee for Aeroneutics,
Langley Field, Va., June T, 1956.
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Figure l.- Cross sectlon of cylindrical bar composed of two materials.
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Figure 2.~ Shearing stresses on an element at the interface between the
materials. Superscripts on symbols correspond to regions indicated
in figure 1.

Figure 3.~ Cross section of a composite thin-walled cylindrical shell.
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(c) Diamond cross section.

Figure k.- Notation used in analysis.
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Figure 5.- Determination of eigenvalues in exact solution for rectangular
cross sectlon,
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(b) Constant associated with shear modulus of shell-wall material .

Figure 6.~ Torsional stiffness constants for a composite thin-walled
cylindrical shell of rectangular cross section. M/6 = G1Jdy = GoJos
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Rayleigh- Ritz method
~——e——— Variational method
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{a) Constant associated with shear modulus of core material.
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(b) Constant associated with shear modulus of shell-wall material.

Figure T.- Torsional stiffness constents for a composite thin-
walled cylindrical shell of slender triangular cross section.
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